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Periodicity of p-adic continued fractions

A well known theorem of Lagrange states that the simple continued fraction expansion
of a real number is periodic if and only if that real number is quadratic irrational. Several
authors have tried to establish analogous results for continued fractions of p-adic num-
bers. The present author [3] showed that such a result is possible if one starts with
sequences of approximation lattices of p-adic numbers, instead of continued fractions. We
note that from a periodic sequence of approximation lattices of a p-adic number ¢ it is
easy to construct a periodic continued fraction expansion of &.

This process of constructing the continued fraction such that it is periodic, is the reverse
of the process in the real case, where one starts by defining the continued fraction, and
then tries to prove its periodicity. It would be interesting to obtain periodicity results for
a given p-adic continued fraction expansion method, e.g. that introduced by Schneider [2].
Bundschuh [1] remarks that for this type of p-adic continued fractions a periodic con-
tinued fraction represents either a rational p-adic number of special type, or a quadratic
irrational p-adic number (analogous to Euler’s theorem). Further, he gives some numeri-
cal evidence indicating that the converse (analogous to Lagrange’s theorem) may not be
true.

It is the purpose of this note to show that for Schneider’s continued fraction algorithm
for p-adic numbers, it may indeed happen that quadratic irrational numbers in Q, have
non-periodic continued fraction expansions. Thus for this type of continued fractions an
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analogue of Lagrange’s theorem is not true. Some criteria (but not exhaustive) will be
given for (non)-periodicity. The examples that Bundschuh treated numerically are proved
to be non-periodic.

Let p be prime. Let £ € Q, be a nonzero p-adic integer. Schneider [2] defines the continued
fraction expansion of £ as follows. Put &, = &. Given a p-adic integer &, for some ne N,
let a,€{0,1,..., p —1} be such that b, = ord, (¢, — a,) is positive. We continue only if
¢, # a,. Then define &, , by

P

én:an+ .
€n+1

Then |£,|, =1 and a, # O for all n > 0. Now the continued fraction expansion of ¢ is

bo by
_ p p
f——ao'i‘fa"i"—a;l-l-....

Note that Bundschuh [1] has a slightly, but not essentially, different definition and
notation.

We say that the continued fraction expansion of ¢ is periodic if there exist mqe N, ke N
such that a,, ., = a,,, b,, 1 = b,, for all m = m,. Bundschuh [1] asks to prove or disprove
periodicity for the continued fractions of & = \ﬁ, for c e Z not a square, but a quadratic
residue (mod p), so that £eQ,, a.o. for the four examples (c,p) = (—1,9), (2,7), (5,11),
(3,13).

There exist unique rational numbers P,, Q, such that

- B, + \/E
" Q,
for neN,. Then Py, =0, Q, = 1, and we have the recursion formulas

By =—F—a,-0,),
Qpr1=(c— Pn2+1)/Pb"‘Qn'

We show that P, and Q, are integers, and that Q, | c — P2, for all ne N,,. It is obvious for
n = 0. Suppose it is true for some n = 0. Then P, , is obviously an integer. Further,

¢— PB4, =c—P'+2-a,P-Q,—a2-Q?=0 (modQ,),
and
C'"Pnz+1 = (B4 +\/E)'(-—R|+l +\/E)

=By + /) (B —a,0,+ Jc)
=P,y +/c) (& —a,) Q,=0 (modp™),

hence Q, . , is integral. It follows at once that Q, ., | ¢ — P2 ,. We now prove the following
lemma.
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Lemma. Iffor some n the signs of P, and Q,, are different, and P2, , > c, then the continued
fraction of \ﬂ €Q, is non-periodic.

Proof. Since P, and Q, have different signs, it follows by the recursion formula for P, ,
that B, and P, , have different signs. By the recursion formula for Q, ., and by P2, > ¢
it follows that Q,,, # 0, and Q, and Q,, , have different signs. Hence the signs of P, ,
and Q, , , are different. Further, by a,,; #0,

[Bia2l =1FRsil+ a1 1Qne | > 1Byl
so that P% , > c¢. Consequently, the conditions for the lemma hold for n + 1 as well.
Hence, by induction, | P,| - oo as n — co. But periodicity of the continued fraction implies
periodicity of P, and Q,, which contradicts that | P,| is unbounded. ]
Corollary. If ¢ < O then the continued fraction of \/EEQ‘, is non-periodic.

Proof. If ¢ < 0 then always P? > c. Further, P, = a, > 0, and Q, = (c — P3)/p* < 0.
Apply the lemma for n = 1. O

Examples. The four examples of Bundschuh all satisfy the conditions for the above
lemma with n = 1. We give a few details below.

1. \/ —1€eQs. The non-periodicity follows from the corollary. We have in fact, if we take
—1 =2 (mod 9),

0 0 2 1
1 2 - 1 1
2| -3 2

and the continued fraction starts with

SRR IR
thte Tttt tn 1t

2. /2e@Q,. We take ﬁ = 3 (mod 7). Then we have

n|h 0 a b

—
w
I
—
—
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5e@,,. We take \/— = 4 (mod 11). Then we have

n|h 0 a b,

0 4 1
1 4 - 3 1
-7 2 1

3e@Q,;. We take /3 =4 (mod 13). Then we have

0 4 1
1 4 — 5 1
-9 10 1

Next we show that there are also many p-adic quadratic irrationals that do have periodic
continued fraction expansions, as defined above. Let ce N be a non-square, that can be
written as ¢ = e* + d - p* for d, e, ke N with 1 S e < 1(p —1) and d|2¢, p ¥ d. Then we
find

n|B Q a b,
010 1 e k
1|e d 2e/d k
2| e 1 2e k
3 ]e d 2e/d k

so that the continued fraction is periodic with period length 2.

We conclude by giving some «exceptional» pairs (c, p) which do have periodic con-
tinued fractions, but seem not to fit in an infinite sequence, such as given above. They are:
(c, p) = (136,3), (376, 5), (148,7), (388, 11). We have (with the bar denoting the repeating

part):
J136=1 3 FJ
136 +l—-J +h
125 5 5 ‘_SJ li‘ 125
’/376-1+|—_4J+HJ+I?]+1+4+F~J2’
49 7 7 49
Bt gy
J148 =1 + i
_5s 121 +|11J+(£,+ 121
=ttt Trio
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Suggestions for further research. We observe that in all cases presented above, as in the
real case, the periodic continued fractions are symmetric. Namely, for period length k we
havea; = a;_;and b; = b, ,_;forj=1,2,..., k —1. Further, a, = 2-a, appears to hold,
as in the real case. We found no examples of odd period length.

There is also a connection to Pell-like equations. We illustrate this with the example
V376€Qs. Let p,/q, be the nth convergent of the continued fraction expansion, defined

by
p—lzl’ p():aO’ pnzan'pn—1+5b"'pn72 forng1’
q-,=0, qozl,q,,=a,,-q,,_1-{-5""-q,,_2 forn=>1.

Put
p:—316-q>=4d, 5", c,eN, d,eZ, 5¢d,.

Then we find that ¢, = X b;, and the sequence {d, } . _, is given by 1, —3, 17, —4, 17,
j=0

—3,1, —3,17,..., which is symmetric. The fifth convergent ps/qs = 12 103/603, for which

ds = 1, gives rise to a sort of 5-adic fundamental unit> 12 103 + 603 - . /376, in the sense

that p; . 6; + Giv6j - /376 = (i + 4; - \/376) - (ps + g5 - /376) for i=—1,0,...,4,

andj =0, 1,2,....It would be interesting to have a more general theory of these matters.

B. M. M. de Weger, Faculty of Applied Mathematics,
University of Twente, Enschede
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